Journal of Organometallic Chemistry, 116 (1976) 323-326 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PHOTOINDUCED REACTIONS OF $(CF_3S)_3N$ AND $CF_3SeSeCF_3$ WITH $Mn_2(CO)_{10}$ AND $Fe(CO)_5$

M.K. CHAUDHURI, A. HAAS * and A. WENSKY *

Lehrstuhl für Anorganische Chemie II, Ruhr-Universität, Postfach 2148, 4630 Bochum (West Germany)

(Received March 1st, 1976)

Summary

Tris(trifluoromethylmercapto)amine, N(SCF₃)₃, and bis(trifluoromethyl)diselenide, (SeCF₃)₂, produce \cdot ECF₃ radicals (E = S, Se) under UV irradiation, and these react with metal carbonyl radicals \cdot M(CO)_n (M = Mn, n = 5; M = Fe, n = 4) to give ultimately [M(CO)_{n-1}(ESF₃)]₂. The compounds have been characterised by elemental analysis, IR, NMR and mass spectral studies. The mass spectra of the trifluoromethylselenium derivatives are discussed.

Introduction

On photolysis in Pyrex apparatus tris(trifluoromethylmercapto)amine produces $\cdot N(SCF_3)_2$ and $\cdot SCF_3$ radicals [1] and bis(trifluoromethyl)disulfide produces $\cdot SCF_3$ radicals [2,3]. It was thought to be of interest to try to trap $\cdot N(SCF_3)_2$ with metal carbonyl radicals viz., $\cdot M(CO)_n$ (M = Mn, n = 5; M = Fe, n = 4), and also to see whether bis(trifluoromethyl)diselenide gives rise to compounds which could be explained in terms of the presence of $\cdot SeCF_3$ radicals. We describe below our studies of the reaction of $N(SCF_3)_3$ and $(SeCF_3)_2$ with Mn₂(CO)₁₀ and Fe(CO)₅.

Experimental

All manipulations were carried out under nitrogen or argon. Solvents were distilled before use. Analyses were performed by the Analytical Laboratories of this institute. IR spectra were recorded on a Perkin–Elmer 125 spectrometer in n-hexane solution. ¹⁹ F NMR spectra in n-pentane or CH_2Cl_2 were recorded on a Bruker HX-60/5 spectrometer at 60 MHz using CCl_3 F as an internal standard. Mass spectrometric measurements were made on a CH-5 Varian MAT mass spectrometer at 70 eV electron energies.

^{*} Present address: General Electric Co., Mt. Vernon, Ind. 47620 (U.S.A.)

	Mol. wt. (by	1. C 1400 / C 1400 / C	536	482		362	578
	ν(CF) (cm ⁻¹)		1145s, 1130m, 1085s	1152m, 1098s, 1079vs		1138vs, 1089vs 1060s	1142s, 1078vs, 1052s
	ν(C0) (cm ⁻¹)		2098m, 2040s, 2027vs, 1996s	2097m, 2059vs, 2024s, 2020s		2098s, 2057vs, 2022vs, 1970vs	2093vs, 2051vs, 2010vs
	l 9 _F NMR (ppm)		34.2	anti 35.1 23.3	syn 31.1	28.9	27.8
		Metal	20.91 (20.50)	23,51	(23.17)	17.82 (17.45)	19.62 (19.40)
	(%)	F	21.87 (21.26)	23.85	(23.66)		
×	ound (calcd.)	S	12.08 (11.96)	13,85	(13.31)		
СТКАЬ DAT	Analysis f	x	22.61 (22.40)	20.12	(19.94)	19.61 (19.06)	16.79 (16.69)
L AND SFE	Yield (%)		78	59		67	73
TABLE 1 YIELD ANALYTICA	Product		[Nín(CO)4(SCF ₃)] 2	[Fe(CO) ₃ (SCF ₃)] 2		[Mn(CO)4(ScCF3)] 2	[Fe(CO) ₃ (SeCF ₃)] 2

A typical photoinduced reaction

Metal carbonyl and N(SCF₃)₃ or (SeCF₃)₂ in 1 : 2 mole proportions were irradiated in a Pyrex glass bomb for 12–15 h at room temperature in presence of a minimum amount of CH₂Cl₂-n-hexane (1 : 1) solution. The Pyrex tube was then cooled at –196°C and the generated CO was pumped off through a vacuum line. The tube was warmed to 0°C. The crystalline compound obtained was filtered and purified by recrystallisation from CH₂Cl₂/n-hexane or by sublimation. The analytical data, yield, IR data for ν (CO) and ν (CF) regions, and ¹⁹F NMR data are set out in Table 1.

Results and discussion

On photolysis $N(SCF_3)_3$ decomposes to $-N(SCF_3)_2$ and $-SCF_3$ radicals; information on this decomposition has already been reported [1,4]. With a view to trapping $\cdot N(SCF_3)_2$ radicals, photoinduced reactions of $N(SCF_3)_3$ with $Mn_2(CO)_{10}$ or Fe(CO)₅ have been carried out, but in both cases only SCF₃ derivatives of metal carbonyls were obtained. Changing the conditions, (solvent, time of irradiation etc.) did not bring about any significant trapping of $\cdot N(SCF_3)_2$. Failure to obtain $N(SCF_3)_2$ derivatives of metal carbonyls, however, does not rule out the possibility of the existence of $\cdot N(SCF_3)_2$ radicals, since it is possible that because of the presence of highly electronegative SCF₃ groups, the nitrogen of $N(SCF_3)_2$ acts as a very poor donor towards metal atoms. Moreover the nitrogen does not possess any acceptor properties making it difficult to function as a ligand. In view of the products a tentative mechanism of the reactions can be formulated as follows:

 $2 \operatorname{N}(\operatorname{SCF}_3)_3 \rightarrow 2 [\cdot \operatorname{N}(\operatorname{SCF}_3)_2] + 2 (\cdot \operatorname{SCF}_3) \\ 2 [\cdot \operatorname{N}(\operatorname{SCF}_3)_2] \rightarrow 4 \cdot \operatorname{SCF}_3 + \operatorname{N}_2 [1] \\ 2 \cdot \operatorname{M}(\operatorname{CO})_n + 2 \cdot \operatorname{SCF}_3 \rightarrow 2 [(\operatorname{CO})_n \operatorname{M} \cdot \operatorname{SCF}_3] \\ 2 [(\operatorname{CO})_n \operatorname{MSCF}_3] \rightarrow [\operatorname{M}(\operatorname{CO})_{n-1} \operatorname{SCF}_3]_2 + 2 \operatorname{CO} \\ (\operatorname{M} = \operatorname{Mn}, n = 5; \operatorname{M} = \operatorname{Fe}, n = 4)$

UV irradiation of bis(trifluoromethyl)diselenide gives rise to the formation of SeCF₃ derivatives of metal carbonyls, which can be explained in terms of the formation of \cdot SeCF₃ radicals. Like its thioanalogue SeCF₃ reacts with \cdot M(CO)_n radicals (M = Mn, n = 5; M = Fe, n = 4), and produces [M(CO)_n(SeCF₃)], which because of its instability, dimerises to [M(CO)_{n-1}(SeCF₃)]₂ with the expulsion of CO groups.

The IR spectra of $[M(CO)_{n-1}ECF_3]_2$ (E = S, Se) in the $\nu(C-F)$ region show frequencies characteristic of bridging ECF₃ groups [5]. Since there is no absorption in the bridging CO region it is safe to assume that only terminal CO groups are present. From the typical pattern of the $\nu(CO)$ bands it appears that the manganese complexes structures similar to those of the analogous halides $[Mn(CO)_4X]_2$ [6] and the iron complexes structures similar to that of $[Fe_2(CO)_6S_2]$ [7].

Appearance of a sharp singlet in the ¹⁹F NMR spectra of $[Mn(CO)_4 ECF_3]_2$ and $[Fe(CO)_4 SeCF_3]_2$ suggests that the SCF₃ and SeCF₃ groups are equivalent in the respective complexes and the complexes are diamagnetic. For $[Fe(CO)_3 - (SCF_3)]_2$ the sharp signals at 35.1 and 23.3 ppm are assumed to be due to its anti-isomer and that at 31.1 ppm can been ascribed to the presence of synisomer. This feature of this compound has been noted by others [2].

The mass spectra of $[Mn(CO)_4 SeCF_3]_2$ and $[Fe(CO)_3 SeCF_3]_2$ are of interest and characteristic features of the mass spectra of SeCF₃ derivatives have been noted. The spectrum of $[Fe(CO)_3SeCF_3]_2$ is taken as a typical example. Its mass spectrum shows molecular ion at m/e 578, which undergoes successive loss of six carbonyl groups to give the series of ions $(CF_3Se)_2Fe_2(CO)_n^*$ (n =6, 5, 4, 3, 2, 1 and 0). A peak due to the ion $CF_3SeFe_2F^+$ at m/e 300 indicates the ease of a fluorine shift from carbon to the metal atom somewhat similar to the formation of Cp_2TiF_2 from Cp_2TiCl_2 and $AgSCF_3$ [5]. In going from $Fe_2(SeCF_3)_2^+$ to $CF_3SeFe_2F^+$ a loss of $SeCF_2$ fragment is involved, and ionization of this fragment would lead to $SeCF_2^+$, which appears as one of the strongest ions (m/e = 130) in the mass spectra of $[Mn(CO)_4SeCF_3]_2$ and $[Fe(CO)_3SeCF_3]_2$. Moreover, very recently the simple molecule $SeCF_2$ has been isolated from pyrolysis of $B(SeCF_3)_3$ [8,9], which is consistent with the present mass spectral observations.

The presence of the ions $Fe_2(CO)_n Se_2^+$ (n = 6, 5, 4 and 1) at m/e 440, 412, 384 and 300 and the ions $Fe_2(CO)_n Se^+$ (n = 3 and 2) at m/e 276 and 248 indicates that cleavage of the F_3C —Se bond can compete with loss of CO groups. The observation of the ions $Fe_2(CO)_n^+$ (n = 6, 3, 2, 1 and 0) at m/e 280, 196, 168, 140 and 112 suggests that complete rupture of the metal—selenium bond can also compete with loss of the carbonyl groups and relatively strong iron—iron bonding must also be present in the molecule, which is consistent with the structure assumed.

Acknowledgement

The authors thank the "Alexander von Humboldt Stiftung" for award of a fellowship to one of them (M.K.C.).

References

- 1 A. Haas, J. Helmbrecht and E. Wittke, Z. Anorg. Allgem. Chem., 406 (1974) 185.
- 2 J.L. Davidson and D.W.A. Sharp, J. Chem. Soc. Dalton, (1972) 107.
- 3 J.L. Davidson and D.W.A. Sharp, J. Chem. Soc. Dalton, (1973) 1957.
- 4 E. Benseler and A. Haas, Chem. Ztg., 95 (1971) 757.
- 5 R.B. King and N. Welcman, Inorg. Chem., 8 (1969) 2540.
- 6 M.A. El-Sayed and H.K. Kaesz, Inorg. Chem., 2 (1963) 158.
- 7 C.H. Wei and L.F. Dahl, Inorg. Chem., 4 (1965) 7.
- 8 A. Haas, B. Koch and N. Welcman, Chem. Ztg., 98 (1974) 511.
- 9 A. Haas, B. Koch and N. Welcman, Z. Anorg. Allg. Chem., in press.

326